## Rhodium Catalysis

DOI: 10.1002/ange.201006087

## Regioselective Rhodium(II)-Catalyzed Hydroaminations of Propargylguanidines\*\*

Morgan J. Gainer, Nitasha R. Bennett, Yu Takahashi, and Ryan E. Looper\*

Cyclic and polycyclic guanidinium ion natural products have been shown to modulate a variety of important biological processes and their activities are often reliant on the unique hydrogen bond donor–acceptor topologies that these substructures display. While most synthetic methods to prepare guanidines rely on the addition of an amine (guanylation) of an activated thiourea or urea, [2] alternative methodologies that generates peripheral C–N bonds from an intact guanidine nucleus have proven powerful for the preparation of polycyclic guanidine natural products. [3a-e]

Our interest in the biological activity of guanidine natural products has prompted us to develop a synthetic platform that is capable of delivering cyclic guanidines having multiple ring sizes, substitution patterns, and oxidation states in short order. To this end we have been interested in the addition of guanidine N-H bonds across C-C  $\pi$  systems and recently reported a La<sup>III</sup>-catalyzed tandem addition-hydroamination reaction of propargylcyanamides which required forcing conditions, and resulted in exclusive 5-exo-dig cyclization.<sup>[4]</sup> This led us to study the hydroamination of preformed di-Boc protected propargylguanidines of the type 1, in hopes of finding a 6-endo-dig selective process. Traditionally, metalcatalyzed cyclizations on alkynes favor a 5-exo-dig pathway. This can be seen in AuI- and AuIII-catalyzed cyclization of propargylcarbamates, propargylureas, and propargylamides, [5,6] as well as the Ti<sup>IV</sup>-amide hydroamination reactions of homopropargylamines.<sup>[7,8]</sup> Examples of cyclization of heteroatom nucleophiles onto alkynes leading to 6-endo-dig cyclization, although as synthetically significant as the 5-exodig products, are nevertheless much less common and usually observed with substrates in which the tether is largely sp<sup>2</sup> hybridized.[9,10]

During the preparation of this manuscript, Gin and coworkers described the AuCl<sub>3</sub>-catalyzed hydroamination of alkynes with 2-aminopyrimidines in the synthesis of crambedine.<sup>[11]</sup> Their gold-catalyzed 6-exo-dig cyclization highlights

the power of this approach in total synthesis. Achieving selectivity in these hydroaminations, particularly 5-exo-dig vs. 6-endo-dig, would present a valuable tool for the synthesis of complex guanidine-containing natural products. Here, we describe the discovery of an unusual reactivity of dirhodium(II) carboxylates as highly 6-endo-dig selective hydroamination catalysts in the cyclization of propargylguanidines, while Ag<sup>I</sup> is typically 5-exo-dig selective.

We first examined the ability of traditional  $\pi$ -Lewis acids to catalyze the hydroamination of 1a (Table 1). Initial

 Table 1: Catalyst screen for propargylguanidine hydroamination.

 path a: "6-endo-dig"
 path b: "5-exo-dig"
 yne-guanidine

| Entry            | Catalyst <sup>[a]</sup>               | Solvent                         | t [h] | Selectivity <sup>[b]</sup> <b>2:3:4</b> | Yield<br>[%] <sup>[c]</sup> |
|------------------|---------------------------------------|---------------------------------|-------|-----------------------------------------|-----------------------------|
| 1                | (CuOTf)₂ <sup>·</sup> Ph              | CH <sub>2</sub> Cl <sub>2</sub> | 48    | 1:4.6:1                                 | 31                          |
| 2                | Pd(OAc) <sub>2</sub>                  | $CH_2Cl_2$                      | 12    | 1:4:0                                   | 55                          |
| 3                | AgOTf                                 | $CH_2Cl_2$                      | 3     | 1:16:0                                  | 52                          |
| 4                | AgOAc                                 | $CH_2Cl_2$                      | 5     | 1:>20:0                                 | 55                          |
| 5 <sup>[d]</sup> | AgOAc                                 | $CH_2Cl_2$                      | 2     | 1:>20:0                                 | 90                          |
| 6                | $NaAuCl_4$                            | $CH_2Cl_2$                      | 168   | 4:1:0                                   | 21                          |
| 7                | $AuCl_3$                              | $CH_2Cl_2$                      | 60    | 3:1:0                                   | n.d.                        |
| 8                | [Rh <sub>2</sub> (tfa) <sub>4</sub> ] | $CH_2Cl_2$                      | 60    | 6:1:0                                   | n.d.                        |
| 9                | [Rh <sub>2</sub> (OAc) <sub>4</sub> ] | $CH_2Cl_2$                      | 60    | 13:1:0                                  | 47                          |
| 10               | $[Rh_2(oct)_4]$                       | $CH_2Cl_2$                      | 16    | > 20:1:0                                | 81                          |

[a] All catalysts were screened at 10 mol% loading. OTf=trifluoromethanesulfonate, OAc=acetate, tfa=trifluoroacetate, oct=octanoate, AcOH=acetic acid. [b] Product selectivities determined by  $^1$ H NMR spectroscopy; > 20:1 indicates a single regioisomer. [c] Yields of isolated product. [d] 3 equiv of AcOH were used as additive.

[\*] M. J. Gainer, N. R. Bennett, Y. Takahashi, Prof. Dr. R. E. Looper Department of Chemistry, University of Utah 315 South 1400 East, Salt Lake City, UT 84112 (USA) Fax: (+1) 801-581-8433 E-mail: r.looper@utah.edu

[\*\*\*] We thank the NIH, General Medical Sciences (R01 GM090082), and the Donors of the American Chemical Society Petroleum Research Fund for support of this research. Y.T. thanks the the Global COE Program (Project No. B01: Catalysis as the Basis for Innovation in Materials Science) from the Ministry of Education, Culture, Sports, Science and Technology (Japan). We thank Prof. Matt Sigman and Prof. Jon Rainier for insightful discussions.



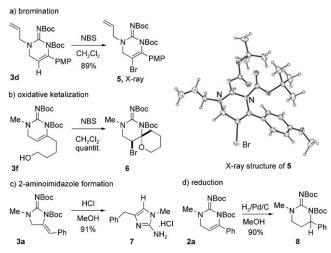
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201006087.

experiments highlighted that there were multiple reaction pathways available (Table 1, entry 1). Cyclization of  $\bf 1a$  in the presence of  $Cu^I$  salts reliably gave a mixture of 6-endo-dig and 5-exo-dig products ( $\bf 2a$  and  $\bf 3a$ , respectively) that are easily identified by the magnitude of either  $^3J$  or  $^4J$  coupling. From nOe experiments it was also confirmed that the 5-exo product  $\bf 3a$  carried the Z-alkene configuration. The unanticipated product was the yne-guanidine  $\bf 4$ , which may arise from a [1,3]-prototropic shift followed by isomerization as detailed by Gevorgyan et al. for propargyl acetates. [12]

Ag<sup>I</sup> catalysis proved to be optimal for the generation of  $\bf 3a$  with AgOAc giving a 1:>20 ratio of  $\bf 2a:3a$  in 55% yield (Table 1, entry 4). It was further found that addition of AcOH

to the AgOAc-catalyzed reaction gave significant rate enhancements (Table 1, entry 5) suggesting that protonolysis of the vinyl metal species was rate limiting, consistent with the known electrophilic hydroamination mechanism.<sup>[13]</sup> Our first success in reversing the selectivity was found with gold(III) catalysts that favored the 6-endo product (Table 1, entries 6 and 7). The sluggishness of the Au-catalyzed reactions directed our attention to Rh<sup>II</sup>. Dirhodium(II) carboxylates have rarely been used to activate alkynes.[14] however Murai et al. have shown that [Rh2(tfa)4] is a competent ene-ene-yne cycloisomerization catalyst and gives different product distributions than  $Pt^{II}$  or  $Ru^{II}$  [15] Gratifyingly,  $[Rh_2(tfa)_4]$  turned the selectivity over favoring the 6-endo product (Table 1, entry 8). Quite to our surprise, given its decreased Lewis acidity, [Rh<sub>2</sub>(OAc)<sub>4</sub>] was a very selective catalyst favoring the 6-endo product 13:1 (Table 1, entry 9). The reaction times were long and we suspected that this was due to catalyst solubility. The reaction was enhanced with [Rh<sub>2</sub>(oct)<sub>4</sub>] giving the 6-endo product in 81 % yield after 16 h in > 20:1 (2a:3a) selectivity (Table 1, entry 10).

Having identified a selective catalyst set, a substrate selectivity profile was developed for the reaction (Table 2) and it was immediately apparent that the reactivity of the dirhodium(II) carboxylates was quite unique. For example, cyclization of the *p*-methoxyphenyl alkyne (Table 2, entry 1) with AgI favored the 5-exo product, however with poor selectivity, consistent with the ability of this substituent to competitively stabilize a vinyl cation for 6-endo cyclization. In contrast, Rh<sup>II</sup> gave exclusively the 6-endo product 2b. Cyclization of electron-poor aryl alkynes showed the opposite trend, with AgI giving high 5-exo selectivity while RhII was more modestly selective for the 6-endo product 2c (Table 2, entry 2). Alkyl-substituted alkynes gave the 6-endo products exclusively with RhII (Table 2, entries 3-7). This is in direct contrast to the AgI-catalyzed reactions, where modest selectivities for the 5-exo products are seen when the alkyne termini are electronically indistinguishable. Importantly for subsequent annulations and access to polycyclic skeletons, [Rh<sub>2</sub>(oct)<sub>4</sub>] tolerates useful functional groups (e.g. alcohols and alkyl chlorides, Table 2, entries 4-7). These primary alkyl chlorides were also cleanly cyclized to the 5-exo-dig isomers 2g,h with AgI. Substitution is also permitted at the propargylic position wherein good selectivities are seen with AgI for the 5-exo product and with RhII for the 6-endo product (Table 2, entry 8). Substituents on the guanidine nitrogen had modest effects on selectivity, with the 6-endo product always favored under Rh<sup>II</sup> catalysis (Table 2, entries 9,10). The tertbutyl alkyne 11 (Table 2, entry 11) reacted well in the Ag<sup>I</sup>catalyzed process but was unreactive toward Rh<sup>II</sup>, presumably due to the size of the Rh<sup>II</sup> catalyst.


The resultant cyclic ene-guanidines contain a rich functional group handle for further manipulations (Scheme 1). For example bromination proceeds to give the 5-bromodihydropyrimidine 5 the structure of which was further confirmed by X-ray crystallography (Scheme 1a). Oxidative cyclization of pendant nucleophiles gives the spirocyclic hemiaminal 6, reminiscent of the crambescidins Scheme 1 b. Deprotection of the 5-membered ene-guanidine 3a under acidic conditions was accompanied by isomerization to give the 2-amino-

**Table 2:** Substrate scope for the hydroamination of propargylguanidines with  $[Rh_2(oct)_4]$  or AgOAc as catalyst.

10 mol % [Rh2(oct)4]

[a] Yields of isolated product. [b] Products were inseparable by chromatography; combined yield. [c] PMB = p-methoxybenzyl.

## Zuschriften



**Scheme 1.** Transformations of the resultant ene-guanidines. PMP = p-methoxyphenyl, NBS = N-bromosuccinimide.

imidazole **7** (Scheme 1 c). [16] Reduction was also cleanly performed on **2a** to give tetrahydropyrimidine **8** (Scheme 1 d).

Examples of alkyne activation by dirhodium(II) carboxylates are quite rare. [8,17] Given the fact that reactions of internal alkynes have only been observed with [Rh2(tfa)4], [18] and that [Rh<sub>2</sub>(oct)<sub>4</sub>] is not able to activate alkynes independently, [8] we were surprised that the dirhodium(II) alkylcarboxylates were competent catalysts for this transformation especially at room temperature. [19] This was especially true for the cyclization of electron-deficient alkynes such as the pCF<sub>3</sub>Ph-substituted alkyne **1c**. We were even more surprised by the observation that 1c reacted ten times faster than the pmethoxy-substituted alkyne **1b**. Regardless of the poor  $\pi$ -Lewis acidity of these catalysts, this suggested that coordination of the alkyne was not rate limiting. Addition of 3 equivalents of acetic acid changed the selectivity from 5:1 to 1:1.7 (2c:3c, Table 3, entries 1 and 2) suggesting that protonation of a vinyl-rhodium intermediate might be involved in the product-determining step. The use of [Rh<sub>2</sub>(tfa)<sub>4</sub>] as a catalyst also favored the 5-exo-dig product with 1c (Table 3, entry 3). Taken together this may suggest a Curtin-Hammett

Table 3: Condition effects on selectivity.

| Entry | R                   | Catalyst                                | Conditions                                                              | Selectivity<br>2:3 |
|-------|---------------------|-----------------------------------------|-------------------------------------------------------------------------|--------------------|
| 1     | <i>p</i> CF₃Ph      | [Rh <sub>2</sub> (oct) <sub>4</sub> ]   | CH <sub>2</sub> Cl <sub>2</sub> , 0.05 м, 23 °C                         | 5:1                |
| 2     | pCF <sub>3</sub> Ph | [Rh <sub>2</sub> (oct) <sub>4</sub> ]   | CH <sub>2</sub> Cl <sub>2</sub> , 0.05 м, 23 °C,<br>AcOH <sup>[a]</sup> | 1:1.7              |
| 3     | $pCF_3Ph$           | [Rh <sub>2</sub> (tfa) <sub>4</sub> ]   | CH <sub>2</sub> Cl <sub>2</sub> , 0.05 м, 23 °C                         | 1:5                |
| 4     | Ph                  | $[(Ph_3P)_3RhCl]$                       | CH <sub>2</sub> Cl <sub>2</sub> , 60°C, 12 h                            | 10:1               |
| 5     | Ph                  | [(Ph <sub>3</sub> P) <sub>3</sub> RhCl] | AgSbF <sub>6</sub> , CH <sub>2</sub> Cl <sub>2</sub> , RT, 12 h         | 1:10               |

[a] 3 equivalents of AcOH were used.

scenario wherein the initial cyclization to form a 5- or 6-membered vinyl-rhodium anion is highly reversible and that perturbation of this pre-equilibrium by stabilizing the kinetically favored 5-exo-dig intermediate leads to poor selectivity.<sup>[20]</sup>

Mechanistically it is difficult to rationalize oxidation state changes in the dirhodium(II) carboxylates upon arriving at a vinyl–rhodium intermediate (in this case the formation of Rh<sup>I</sup> in the dimer). This prompted us to examine better defined catalysts known to proceed through vinyl–rhodium intermediate. [21] Although sluggish, Wilkinson's catalyst promoted the cyclization and favored the 6-endo product in 10:1 selectivity (Table 3, entry 4). Cationic Rh<sup>I</sup>, however, reversed the selectivity favoring the 5-exo product in 10:1 selectivity (Table 3, entry 5). Again this may support the necessity for the initial cyclization event to be reversible in order to access the 6-endo product. More importantly this suggests access to more defined vinyl–rhodium intermediates that might be exploited for cascade reactivity.

In conclusion we have demonstrated the unique ability of dirhodium(II) carboxylates to catalyze the 6-endo-dig selective hydroamination of propargylguanidines. The resultant cyclic ene-guanidines contain a rich latent functional group for the preparation of skeletally diverse cyclic guanidine natural product substructures. Studies to further understand the reactivity of dirhodium(II) carboxylates and the application of these products to more complex targets are ongoing and will be reported in due course.

Received: September 28, 2010 Published online: December 9, 2010

**Keywords:** alkyne activation  $\cdot$  guanidine  $\cdot$  heterocycles  $\cdot$  hydroamination  $\cdot$  rhodium

- [1] For recent reviews see: a) J. D. Sullivan, R. L. Giles, R. E. Looper, Curr. Bioact. Compd. 2009, 5, 39–78; b) K. A. Schug, W. Lindner, Chem. Rev. 2005, 105, 67–114; c) P. Blondeau, M. Segura, J. de Mendoza, R. Pérez-Fernández, Chem. Soc. Rev. 2007, 36, 198–210.
- [2] a) G. M. Coppola, G. E. Hardtmann, O. P. Pfister, J. Org. Chem. 1976, 41, 825–831; A. R. Katritzky, B. V. Rogovoy, ARKIVOC 2005, 4, 49–87.
- [3] a) L. E. Overman, M. H. Rabinowitz, J. Org. Chem. 1993, 58, 3235-3237; b) F. Cohen, L. E. Overman, S. K. L. Sakata, Org. Lett. 1999, 1, 2169-2172; c) M. Kim, J. V. Vulcahy, C. G. Espino, J. Du Bois, Org. Lett. 2006, 8, 1073-1076; d) B. B. Snider, C. Y. Xie, Tetrahedron Lett. 1998, 39, 7021-7024; e) M. A. Arnold, K. A. Day, S. G. Durón, D. Y. Gin, J. Am. Chem. Soc. 2006, 128, 13255-13260.
- [4] R. L. Giles, J. D. Sullivan, A. M. Steiner, R. E. Looper, Angew. Chem. 2009, 121, 3162–3166; Angew. Chem. Int. Ed. 2009, 48, 3116–3120.
- [5] S. Ritter, Y. Horino, J. Lex, H.-G. Schmalz, Synlett 2006, 3309— 3313.
- [6] a) A. Bacchi, G. P. Chiusoli, M. Costa, C. Sani, B. Gabriele, G. Salerno, J. Organomet. Chem. 1998, 562, 35-43; b) A. Bacchi, M. Costa, B. Gabriele, G. Pelizzi, G. Salerno, J. Org. Chem. 2002, 67, 4450-4457; c) A. Saito, K. Iimura, Y. Hanzawa, Tetrahedron Lett. 2010, 51, 1471-1474; d) G. Verniest, D. England, N. De Kimpe, A. Padwa, Tetrahedron 2010, 66, 1496-1502.

- [7] F. Esser, K. H. Pook, A. Carpy, Synthesis 1990, 72-76.
- [8] F. Pohlki, S. Doye, Chem. Soc. Rev. 2003, 32, 104-114.
- [9] a) Z.-Y. Han, X.-H. Chen, L.-Z. Gong, J. Am. Chem. Soc. 2009, 131, 9182–9183; b) S. Haruki, K. Atsushi, Synthesis 1999, 1145–1148; c) T. Enomoto, A.-L. Girard, Y. Yasui, Y. Takemoto, J. Org. Chem. 2009, 74, 9158–9164.
- [10] A 6-endo-dig selective process has been described for the Hg<sup>II</sup>-catalyzed cyclization of propargylcarbonates, see: H. Yamamoto, M. Nishiyama, H. Imagawa, M. Nishizawa, *Tetrahedron Lett.* 2006, 47, 8369 8373.
- [11] N. R. Perl, N. D. Ide, S. Prajapati, H. H. Perfect, S. G. Duron, D. Y. Gin, J. Am. Chem. Soc. 2010, 132, 1802–1803.
- [12] T. Schwier, A. W. Sromek, D. M. L. Yap, D. Chernyak, V. Gevorgyan, J. Am. Chem. Soc. 2007, 129, 9868–9878.
- [13] T. E. Müller, J. A. Lercher, N. Van, AIChE J. 2003, 49, 214.
- [14] D. F. Taber, M. Rahimizadeh, *Tetrahedron Lett.* 1994, 35, 9139–9140.
- [15] N. Chatani, K. Kataoka, S. Murai, N. Furukawa, Y. Seki, J. Am. Chem. Soc. 1998, 120, 9104–9105.
- [16] While this manuscript was under review the Ag<sup>I</sup>-catalyzed 5-exodig selective hydroamination of proargylguanidines in the

- synthesis of 2-aminoimidazoles was independently reported: D. S. Ermolat'ev, J. B. Bariwal, H. P. L. Steenackers, S. C. J. De Keersmaecker, E. V. Van der Eycken, *Angew. Chem.* **2010**, 122, 9655–9658; *Angew. Chem. Int. Ed.* **2010**, 49, 9465–9468.
- [17] a) K. Ota, N. Chatani, Chem. Commun. 2008, 2906–2907; b) K. Ota, S. I. Lee, J.-M. Tang, M. Takachi, H. Nakai, T. Morimoto, H. Sakurai, K. Kataoka, N. Chatani, J. Am. Chem. Soc. 2009, 131, 15203–15211; c) S. I. Lee, N. Chatani, Chem. Commun. 2009, 371; d) D. Shikanai, H. Murase, T. Hata, H. Urabe, J. Am. Chem. Soc. 2009, 131, 3166–3167; e) K. Miki, Y. Washitake, K. Ohe, S. Uemura, Angew. Chem. 2004, 116, 1893–1896; Angew. Chem. Int. Ed. 2004, 43, 1857–1860.
- [18] There is one characterized example of a Rh<sup>II</sup> π interaction with an alkyne: F. A. Cotton, E. V. Dikarev, M. A. Petrukhina, S. E. Stiriba, *Organometallics* 2000, 19, 1402–1405.
- [19] [Rh<sub>2</sub>(OAc)<sub>4</sub>] has been shown to activate terminal alkynes by a different mechanism; see Ref. [17e].
- [20] a) D. Y. Curtin, *Rec. Chem. Prog.* **1954**, *15*, 111–128; b) J. I. Seeman, *Chem. Rev.* **1983**, *83*, 83–134.
- [21] K. Fagnou, M. Lautens, Chem. Rev. 2003, 103, 169-196.